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Brevenal is a pentacyclic polyether natural product isolated from gave alcohol7, which was then converted to allylic alcoh®lia
the red tide-forming dinoflagellateKarenia brevis.! Its gross nitrile 8 by standard chemistry. Asymmetric epoxidation9ded
structure and relative stereochemistry have been determined basetb hydroxyl epoxidel0 as a single stereoisomer. Oxidation and
on extensive NMR experiments. The biological profile of brevenal ensuing methylenation of the resulting aldehyde gave vinyl epoxide
is of interest in that it competitively displaces tritiated dihydrobre- 11. Upon treatment o1 with DDQ, removal of the PMB group
vetoxin-B (PH]PbTx-3) from voltage-sensitive sodium channels in  and concomitant @ndoring closure smoothly took placegiving
a dose-dependent manner and acts as a natural brevetoxin antagonisise to pyranl3in 89% vyield after TES protection. At this stage,
in vivo.r! More importantly, brevenal improved tracheal mucus the stereochemistry df2 was confirmed by NOE experiments as
velocity in picomolar concentrations in an animal model of asthma, shown. Pyrari3was converted to enoatd in a four-step sequence.
and thus may be a source of agents for treating mucociliary Hydrogenation/hydrogenolysis of4 followed by Yamaguchi
dysfunction associated with cystic fibrosis and other lung disofders. lactonizatiofi gave lactonel5, which was then transformed to the
Herein, we describe the first total synthesis of the proposed structureAB ring enol phosphat@.®

1 of brevenal. The synthesis of the DE ring fragmeBtis summarized in
Our synthetic strategy towarblwas to build up the pentacyclic ~ Scheme 3. Benzylation of the known oxepdt&'° correspond-
polyether core ofl from the AB and DE ring fragment2 @nd3, ing to the D ring, followed by ozonolysis/reductive workup gave
respectively) by means of our developed SuzMiyaura coupling- alcohol 17. The primary alcohol ofL7 was benzylated, and the

based methodology (Scheme31j. benzylidene acetal was removed to provide di8l One-pot tri-

flation/TBS protectioi and subsequent alkylation with allylIMgBr/
CuBr2 gave olefin19. Oxidative cleavage of the double bond,
thioacetalization of the derived aldehyde, and removal of the TBS
33 group led to alcohoR0. Hetero-Michael reaction with methyl
propiolate followed by hydrolysis of the thioacetal afforded
aldehyde?1, which upon exposure to Se(IMeOH/THF) furnished

Scheme 1. Synthetic Strategy

Proposed structure of H‘: 0=

brevenal (1) Me o7 H " tricyclic lactone22 as a single stereoisomer after acidic treatri@nt.
TBDPSO Me OH @ MH s oTBS DIBALH reduction and Wittig reaction, followed by oxidatich,
ﬁ;oj;mosn led to ketone23. The C26 equatorial methyl group was introduced
5 PMBO HoOH by treating 23 with MeLi (THF, —78 to 0 °C), giving 24
3 stereoselectively (dr 10:1)15The C26 and CZ? stereochemistries

were confirmed by NOEs. The tertiary alcohol was silylated to give
The synthesis of the AB ring fragmegtstarted with Evans’ TBS ether25. Hydroboration, hydrogenolysis of the benzyl groups,
synaldol reaction of aldehydéwith oxazolidinones.6 Subsequent and ensuing acetal formation led 26. Benzylation followed by
reductive removal of the chiral auxiliary provided 1,3-déoas a regioselective cleavage of the acetal moiety provided alc@iiol
single stereoisomer (Scheme 2). Protectio® af itsp-methoxy- Finally, iodination followed by base treatment furnished the DE
benzylidene acetal followed by regioselective DIBALH reduction fragment3.

Scheme 2. Synthesis of the AB Ring Fragment?
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aReagents and conditions: (@Bu,BOTf, EtsN, CH,Cl,, —78 to 0°C; (b) NaBH,, THF/H;O, 0°C to rt, 90% (two steps); (@)-MeOCsH4sCH(OMe),
PPTS, CHCIy, rt; (d) DIBALH, CH,Cl,, —78 to —40 °C, 94% (two steps); (e) MsClI, g, CH.Cl,, 0 °C; (f) NaCN, DMSO, 60°C, 96% (two steps); (g)
DIBALH, CHCl,, —78°C, 90%; (h) PBP=C(Me)CQEL, toluene, 80C, 97%; (i) DIBALH, CH.Cl,, —78 °C, quant.; (j) {+)-DET, Ti(Oi-Pr), t-BuOOH,
CHyCl, —40 °C, 88%; (k) SQ-pyridine, EtN, DMSO/CH_Cl,, 0 °C; (I) PhsPCHBr, NaHMDS, THF, 0°C, 90% (two steps); (m) DDQ, Gi&lx/H20, rt;
(n) TESOTf, 2,6-lutidine, CkCl,, 0 °C, 89% (two steps); (0) (SighH, THF, 0 °C; then aq. NaHC@ H.0, rt, 92%; (p) SQ-pyridine, EtN, DMSO/
CH.Cly, 0 °C; (q) PRP=CHCO,Bn, toluene, 8C°C, 86% (two steps); (r) ag. HCI, THF, rt, 95%; (syHPd(OH)Y/C, 2:1 THF/MeOH, rt, 90%; (t) 2,4,6-
Cl3CsH2COCI, EgN, THF, 0°C to rt; then DMAP, toluene, 118C, 98%; (u) KHMDS, (PhQ)P(O)CIl, HMPA/THF,—78 °C, 96%.
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Scheme 3. Synthesis of the DE Ring Fragment?@
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aReagents and conditions: (a) NaH, BnBr, DMF,@to rt; (b) G, MeOH/CHCl,, —78 °C; then NaBH, —78 to 0°C, 96% (two steps); (c) KBBu,
BnBr, THF, rt; (d)p-TsOH, MeOH/CHG,, rt, quant. (two steps); (e) T®, 2,6-lutidine, CHCI,, —78 °C; then TBSOTf,—78 to 0°C; (f) allyIMgBr, CuBr,
ether, 0°C, 85% (two steps); (g) OSONMO, THF/HO, rt; then NalQ, rt; (h) 1,3-propanedithiol, BOEb, CH,Cly, —78 to 0°C; (i) TBAF, THF, rt, 88%
(three steps); (j) methyl propiolate, NMM, GEIy, rt; (k) Mel, NaHCGQ, MeCN/H;0, rt, 99% (two steps); (I) Sl MeOH, THF, rt; therp-TsOH, toluene,
80 °C, 84% (two steps); (m) DIBALH, CkCl,, —78 °C; (n) PRPCHBr, NaHMDS, THF, 0°C to rt, 94% (two steps); (0) TPAP, NM@& A MS, CH.Cl,,
rt, 97%; (p) MeLi, THF,—78 to 0°C, 97% (dr> 10:1); (q) TBSOTf, E4N, CH.Cly, rt, quant.; (r) 9-BBN, THF, rt; then ag. NaHGCH,0O5, 0 °C to rt; (S)
Hz, PA(OHY/C, MeOH, rt; (t)p-MeOGH4CH(OMe), PPTS, CHCI,, rt, 80% (three steps); (u) Ki&Bu, BnBr, THF, rt; (v) DIBALH, CH.Cl,, —78 to—40
°C, 85% (two steps); (w)2] PPh, imidazole, THF, rt; (x) K@&Bu, THF, 0°C, 99% (two steps).

Scheme 4. Synthesis of the Pentacyclic Polyether Core?
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aReagents and conditions: (a) 9-BBN, THF, rt;it&M ag. CsCO;, Pd(PPB)4, DMF, 50°C; (b) BHs*SMe,, THF, 0°C to rt; then ag. NaHC) H20,
0 °C to rt, 84% (two steps); (c) TPAP, NM@& A MS, CHCl,, 0 °C, 98%; (d) LHMDS, TMSCI, EiN, THF, —78°C; (e) OsQ, NMO, THF/H,0, rt, 87%
(two steps); (f) DIBALH, THF,—78°C, 76% (diastereomer: 7981 12%); (g) TESOTT, BN, CHxCly, 0 °C; (h) DDQ, CHCI,/pH 7 buffer, rt; (i) TPAP,
NMO, 4 A MS, CH,Cl,, 0°C, 88% (three steps); (j) EtSH, Zn(OEfTHF, rt, 79%; (k) TBSOTf, BN, CH,Cl,, 0 °C, 97%; (I)mCPBA, CHCl,, —78 °C;
then AlMe;, —78 to 0°C, 92%.

Scheme 5. Completion of the Total Synthesis?@
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aReagents and conditions: (a) LIDBB, THF78°C, 99%; (b) TBSOTf, EiN, CH.Cly, 0 °C, 98%; (c) TBAF, AcOH, THF, rt, 78% after three recycles;
(d) Dess-Martin periodinane, CbCly, rt; (e) Bestmann reagent,8O;, MeOH, rt; (f) n-BuLi, THF/HMPA, —78 °C; then Mel, rt, 99% (three steps); (g)
HF-pyridine, THF, 0°C to rt, 96%; (h) TESOTf, BN, CH.Cl,, 0°C, 99%; (i) PhMeSiLi, CUCN, THF,—78 to 0°C; (j) NIS, CH:CN/THF, 0°C to rt, 99%
(two steps); (K42, Pi(dba)y, PhsAs, CuTC, 1:1 DMSO/THF, rt, 63%; (I) TBDPSCI, imidazole, DMF;0; (m) PPTS, 4:1 CbCl,/MeOH, 0°C, 74% (two
steps); (n) S@pyridine, EgN, DMSO/CHCl,, 0 °C; (0) BrPRPCH.CH,CH,SePhn-BuLi, THF/HMPA, —78°C to rt, 97% (two steps); (p) #D,, NaHCG;,
THF, rt, 77%; (q) TASF, DMF/THF, OC to rt, 79%; (r) MnQ, CHxClj, rt, quant.
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With the requisite fragments in hand, the crucial fragment achieved by CuTC-mediated modified Stille reaction. Continuous
coupling and subsequent ring closing events were executed, asefforts toward structural determination and total synthesis of
depicted in Scheme 4. Stereoselective hydroboration of the DE ring brevenal are underway and will be reported in due course.
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followed by dihydroxylation delivered-hydroxy ketone31 as a
single stereoisomer. Subsequent DIBALH reduction afforded diol ~ Supporting Information Available: Experimental procedures,
32in good selectivity (dre= ca. 10:1)!° Protection as the TES ethers, spectroscopic data, and copies #1 and *C NMR spectra for
removal of the PMB group, and ensuing oxidation provided ketone compound=9, 36, 43, and synthetid. This material is available free
33. Exposure oB3to EtSH/Zn(OTf} in THF effected deprotection ~ of charge via the Internet at http://pubs.acs.org.
of the TES groups and concomitant mixed thioacetal formation to
furnish 34 in 79% yield. After TBS protection, oxidation with
MCPBA at—78°C followed by in situ treatment with excess Allyle
resulted in one-pot oxidative activation of the sulfide and stereo-
selective methylation, giving rise to pentacyclic polyetBéras a
single stereoisomer in excellent yiéltiThe stereochemistry &6
was confirmed by NOEs antly 4 as shown.

Having constructed the polycyclic ether skeleton, we next turned
our attention to introduction of the left-hand side chain. The benzyl
group of 36 was replaced with the TBS ether, and selective
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